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Abstract
Small interfering RNA (siRNA) is often used for function study and expression regulation of specific genes, as well as the 
development of small molecule drugs. Selecting siRNAs with high inhibition and low off-target effects from massive can-
didates is always a great challenge. Increasing experimentally-validated samples can prompt the development of machine-
learning-based algorithms, including Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Graph 
Neural Network (GNN). However, these methods still suffer from limited accuracy and poor generalization in designing 
potent and specific siRNAs.
In this study, we propose a novel approach for siRNA inhibition and off-target effect prediction, named AttSiOff. It combines 
a self-attention-based siRNA inhibition predictor with an mRNA searching package and an off-target filter. The predictor 
gives the inhibition score via analyzing the embedding of siRNA and local mRNA sequences, generated from the pre-
trained RNA-FM model, as well as other meaningful prior-knowledge-based features. Self-attention mechanism can detect 
potentially decisive features, which may determine the inhibition of siRNA. It captures global and local dependencies more 
efficiently than normal convolutions. The tenfold cross-validation results indicate that our model outperforms all existing 
methods, achieving PCC of 0.81, SPCC of 0.84, and AUC of 0.886. It also reaches better performance of generalization and 
robustness on cross-dataset validation. In addition, the mRNA searching package could find all mature mRNAs for a given 
gene name from the GENOMES database, and the off-target filter can calculate the amount of unwanted off-target binding 
sites, which affects the specificity of siRNA. Experiments on five mature siRNA drugs, as well as a new target gene (AGT), 
show that AttSioff has excellent convenience and operability in practical applications.
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Graphical Abstract

Highlights
· We utilize a pre-trained model to enrich the information of sequence embedding, and self-attention mechanism to capture 
global dependencies.
· Our inhibition predictor achieves the best performance on both accuracy and generalization.
· We construct a simple and user-friendly approach to design both potent and specific siRNAs.

Keywords  siRNA inhibition prediction · Off-target effects · Self-attention mechanism

Introduction

RNA interference (RNAi), also known as post-transcrip-
tional gene silencing, can resist parasitic and pathogenic 
nucleic acids, and regulate specific gene expression. It has 
been developed into a mature technology to mediate gene 
expression manually and probe gene function [1]. RNAi-
based regulators include 21 ~ 23-nucleotide small interfering 
RNA (siRNA) and ~ 22-nucleotide microRNA (miRNA). In 
this paper, we mainly discuss the function and prediction of 
siRNA. With the help of Argonaute Family Protein 2 (AGO2) 
and TAR RNA Binding Proteins (TRBP), the antisense strand 
(AS) in the siRNA duplex will bind with the target mRNA 
by Watson–Crick base pairing. If the entire AS can hybrid-
ize with the target mRNA, it will introduce mRNA cleavage 

to prohibit the translation process. If only the seed region of 
AS hybridizes with the target mRNA, it will induce mRNA 
degradation and repress the translation process [2–5].

Usually, target mRNA is composed of hundreds or thou-
sands of nucleotides, from which we can generate a massive 
amount of siRNA candidates by the sliding window method. 
However, the knockdown efficiency of siRNA, also called 
inhibition, may vary a lot with a slight change in its compo-
sition [6]. The silencing inhibition is mainly determined by 
the sequence patterns, binding affinity, and the secondary 
structure around the binding regions, while the specificity is 
mostly determined by off-target effects [7]. Compared with 
off-target effects, inhibition is more difficult to predict. All 
the time, researchers have been focusing on the challenges 
to predict the inhibition of siRNA accurately.
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Early on, methods are mainly developed from rather small 
datasets, which often contain biased information. For exam-
ple, Amarzguiouti et al. performed a statistical analysis of 
only 46 siRNAs to identify the preferences of nucleotides 
on each position of the siRNA duplex. They find that the 
motifs U1 or G19 are strongly related to poor inhibition [8].

With the growth of valid samples, algorithms based on 
machine learning have been developed in a data-driven way. 
Heusken et al. make the greatest contribution to enriching 
the relevant dataset. They collected 2431 siRNAs targeting 
34 mRNAs with corresponding validated inhibitions. They 
developed a model named BIOPREDsi using the Stuttgart 
Neural Net Simulator to achieve a rather high Pearson Cor-
relation Coefficient (PCC) of 0.66 [9]. Vert et al. perform a 
LASSO-based regression model, to conveniently estimate 
the importance of each feature. They use the preference 
for specific nucleotides on some positions, as well as short 
asymmetric base motifs, as the input [10]. Ichihara et al. 
developed a simple linear regression algorithm, i-Score, 
which is only comprised of nucleotide preferences at each 
position as the input, and achieves a comparative PCC with 
s-Biopredsi [11]. However, these methods still suffer from 
the incompetence of detecting hidden features.

In recent years, Convolutional Neural Network (CNN) has 
been successfully applied to diverse fields, such as machine 
translation, object detection, protein interaction, etc. It has 
also been used in siRNA inhibition prediction and showed 
remarkable enhancement of precision. Similar to TextCNN, 
the work done by Han et al. utilizes multiple convolutional 
kernels to detect unknown but helpful motifs from local tar-
get mRNA sequences, preprocessed by one-hot encoding. 
Then it uses average pooling and maximum pooling layers to 
extract the most representative features. The thermodynamic 
property calculated from AS is concatenated with the pool-
ing output and then normalized in batch. At last, a neural 
network with one hidden layer of 25 nodes is applied, and 
this model generates the prediction score via the sigmoid 
activation function [12]. It achieves a remarkable improve-
ment in PCC compared with traditional models. However, 
the inadequate input features and simply hidden layers limit 
its performance. The forceful pooling operations result in a 
great loss of information.

Aside from CNN, Graph Neural Network (GNN) is 
another common deep learning algorithm used in bioin-
formatics. Biological molecules are regarded as nodes, and 
their relationships can be represented with edges connect-
ing different nodes [13]. The graph is an intrinsically good 
structure to model topology and capture hidden interrela-
tionships in non-structural data. Massimo et al. propose a 
GNN-based model for siRNA inhibition prediction for the 
first time. There are three types of nodes in their graph. The 

first is a siRNA node, with 3-mer counting as its feature. 
The second is the target mRNA node, with 4-mer count-
ing as its feature. The third is the siRNA-mRNA interaction 
node, with the thermodynamic parameters calculated from 
Gibbs energy and RNAup program as its features. Here, they 
replace the interaction edge with a node, for the sake of 
thoroughly incorporating the interaction information into 
the graph. They consider the inhibition as the property of 
the siRNA-mRNA interaction node to predict. This algo-
rithm achieves a better performance than the aforementioned 
CNN-based method. However, the k-mer counting features 
are still insufficient to represent the characteristics of siRNA 
or mRNA sequences. The graph is fixed with nodes from the 
trainset and test set, resulting in its disability to predict the 
inhibition of new siRNA samples [14].

Despite that various research have been developed to pre-
dict siRNA inhibition, there is still room for developing a 
new algorithm with better accuracy and generalization. This 
can be achieved by optimizing feature selection and mod-
eling process. For example, existing methods usually use 
one-hot encoding to transform siRNA sequence into binary 
sparse matrix. It lacks inter-relationship among different 
kinds of nucleotides. To extract more information hidden in 
sequence, Chen et al. propose a transformer-based model, 
named RNA Foundation Model (RNA-FM). It is trained on 
23 million ncRNA sequences via self-supervised learning. 
The clustering results indicate that the pre-trained RNA-FM 
embedding contains much sequential and functional patterns 
[15]. This model is a good way to encode RNA sequence in 
our research. As for model structure, the transformer used 
in RNA-FM model is based on self-attention mechanism. It 
enables the model to measure the importance of different 
elements in the input sequence and dynamically adjust their 
impact on the output. Compared with recurrence and con-
volutions, self-attention can capture long-distance depend-
encies more efficiently and precisely, when applied to long 
sentences[16]. And DNA or RNA sequence is just composed 
of a lot of nucleotides.

However, some challenges prevent siRNA from being 
applied into clinical trials, such as limited longevity and 
inevitable off-target effects. [17–19]. Off-target effects will 
result in serious misjudgment of inhibition. And silenc-
ing uncertain mRNAs may negatively interfere with some 
significant biochemical pathways. Compared with difficult 
inhibition prediction, the off-target effect is easier to analyze 
with some definite criteria.

In this study, we propose a novel approach for siRNA 
inhibition and off-target effect prediction, named AttSi-
Off. This self-attention-based inhibition predictor employs 
two types of features. One is the embedding of siRNA and 
local target mRNA sequences, generated from a pre-trained 
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RNA-FM model. The other is the prior-knowledge-based 
characteristics of AS, including the thermodynamic param-
eters, the secondary structure, GC content, PSSM score, etc. 
This predictor is comprised of two parts: a feature extrac-
tion module and a fully connected module. In the feature 
extraction module, the multi-head self-attention mechanism 
is used to further extract hidden information by construct-
ing the interaction of every nucleotide with others. To the 
best of our knowledge, it is the first time of self-attention 
mechanism has been used in the prediction of siRNA inhi-
bition. In the fully connected module, the high-dimensional 
representations produced by multi-head self-attention are 
concatenated with other features and go through a deep and 
wide neural network, to produce a prediction score. The ten-
fold cross-validation results and cross-dataset experiments 
both show that our predictor achieves state-of-the-art perfor-
mance, compared with other existing methods.

To facilitate and streamline siRNA design, we com-
bine the predictor with an mRNA searching package and 
an off-target filter. The mRNA searching package can find 
all mature mRNAs for any given gene name. The off-target 
filter can calculate the amount of possible unwanted off-
target binding sites, which affects the specificity of siRNA. 
We testify to the practicability and maneuverability of our 
pipeline on five siRNA drugs from Alnylam Company. The 
results show its great simplicity and effectiveness.

We proclaim the following contributions in our 
approach: (1) We apply the pre-trained RNA-FM model 
to greatly enrich the embedding of the RNA sequences, 
instead of using the classic one-hot binary encoding 
method. (2) We successfully employ a self-attention 
mechanism in the work of siRNA inhibition prediction for 
the first time to capture the global and local dependencies. 
(3) Our predictor achieves the best performance on both 
prediction accuracy and cross-dataset generalization, com-
pared with other methods. (4) We construct a simple and 
user-friendly approach to automatically design both potent 
and specific siRNAs.

Materials and methods

Datasets

As suggested [12], we obtain as many experimentally vali-
dated siRNAs as possible. In this study, 3536 siRNAs from 
the work done by Huesken [9], Reynolds [20], Vickers [21], 
Haborth [22], Takayuki [11], and Ui-Tei [23], are collected. 
We divide these samples into three datasets according to 
their experimental conditions, namely DH, DR, and DT. 
The detailed composition of these three datasets is shown 
in Table 1.

Two miRNAs in DR are removed as a result of failing to 
find binding sites on reported target mRNAs. Two siRNAs 
in DT are removed due to the limitation of the i-Score web-
site, which will be explained later. In addition, the inhibition 
labels of these three datasets range from 0 to 134.1, -27.8 to 
98.9, and 0 to 97, respectively. To unify the data distribution, 
they are normalized individually before being combined as 
a DHRT dataset.

Apart from the public datasets, we collect five siRNA 
medicines from Alnylam Company, which have been applied 
to clinical and diagnostic usage in recent years (Supple-
mentary Table S1). Although these siRNAs are chemically 
modified to strengthen the potency, prolong the longevity, 
and weaken off-target effects, we can remove the chemical 
components here and use their original sequences to further 
validate the robustness and generalization of our inhibition 
predictor, as well as the practicability and maneuverability 
of our siRNA design tool.

The architecture of inhibition predictor

As is shown in Fig. 1, our inhibition predictor consists of 
a feature extraction module, a self-attention module, and a 
fully connected module.

Feature extraction module

In this module, we mainly extract two types of features. One 
is siRNA and local target mRNA sequence contexts, gen-
erated from the pre-trained RNA-FM model. The other is 
the prior knowledge-based characteristics of AS, including 
thermodynamic parameters, k-mer counting, PSSM score, 
the secondary structure, and GC content.

For the sequence contexts, we displace classic one-hot 
encoding with pre-trained RNA-FM embedding. Generally, 
only the core region (19 nucleotides from the 5’ end) of 
AS will hybridize with the target mRNA. Here, the local 

Table 1   The detailed composition of three siRNA datasets. It shows 
the number of siRNAs and target mRNAs in each dataset, as well as 
corresponding publishers. Two siRNAs are removed in DT due to the 
limitation of i-score website, and two are removed in DR as a result 
of lacking binding sites on reported mRNAs

Dataset Num of siRNAs Num of target 
mRNAs

Publishers

DH 2431 34 Huesken
DR 405(407) 11 Reynolds

Vickers
Haborth
Ui-Tei

DT 700(702) 1 Takayuki
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target mRNA sequence is defined as 19 nucleotides on the 
binding site plus 20 downstream and 20 upstream nucleo-
tides (59 nucleotides total), as suggested in the work of Han 
et al. [12]. RNA-FM model will transform each nucleotide 
into a 640-dimensional continuous vector, which proves to 
contain structure-related and function-related information. 
The 21-nucleotide AS and 59-nucleotide local target mRNA 
sequences are transformed into feature matrixes with sizes 
of 21 × 640, and 59 × 640, respectively.

Note that not all local target mRNA has complete flank-
ing regions around its binding site, so we use a special 
640-dimensional vector [0.05, 0.05…0.05] to represent the 
missing nucleotide during embedding.

For the prior knowledge-based characteristics of AS, we 
mainly consider five groups of relevant features. Although 
they are described in previous research from biased and 
small datasets, they do play a role in predicting the inhibi-
tion of siRNA.

The first one is thermodynamic stability, which has an 
importance on inhibition and longevity, as well as deter-
mining which strand in siRNA duplex will hybridize with 
target mRNA [2, 11, 24, 25]. We use the Gibbs free energy 
to describe the thermodynamic characteristics of the core 
region of AS. For instance, if the two adjacent bases are A 
and G, then the energy is -2.08 kJ/mol, according to Supple-
mentary Table S2. There are 20 parameters in total, includ-
ing 18 features calculated from every two adjacent bases, 1 
feature from the energy difference between its 5’ end and 3’ 
end, and 1 feature of overall energy.

The second one is k-mer counting. We count the pres-
ences of 1-mer (4 motifs), 2-mer (16 motifs), and 3-mer (64 
motifs) segments in AS. There are 84 parameters in total.

The third one is the PSSM score. Position Specific Scor-
ing Matrix (PSSM) describes the possibility of observing 
every kind of nucleotide on each position. Here, we generate 
the PSSM from statistical analysis of the entire dataset. For 
any siRNA to predict, we utilize the fixed PSSM to estimate 
the preference for specific nucleotides in some positions. 
There is only 1 parameter for this feature.

The fourth one is related to secondary structure. Unstruc-
tured AS can mediate more active gene silencing. That 
means folded antisense strand is hard to hybridize with tar-
get mRNA, consequently reducing its inhibition [26]. Here 
we use the RNAfold program to calculate the minimum free 
energy and possible base pairing percentage as the second-
ary-structure-related features [27]. There are 3 parameters 
in all.

The last one is GC content, which affects the inhibition by 
changing the thermodynamic property. The stability between 
bases G and C is much stronger than that between bases A 
and U, as is shown in Supplementary Table S2. High GC 
content will result in the difficulty of SS and AS to separate 
from each other, while low GC content will lead to the insta-
bility of the hybridization of AS and target mRNA. Thus, a 
moderate GC content is much preferable. Besides, we calcu-
late the maximum length of continuous base G or C, which 
represents the lower bound of the stability of the entire 
sequence. There are 2 parameters for this type of feature.

Fig. 1   The architecture of our self-attention-based siRNA inhibition predictor. It is composed of three modules: feature extraction module, self-
attention module, and fully connected module
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In summary, we normalize the above five groups of fea-
tures individually to uniform the input distribution. And the 
prior-knowledge-based characteristics of AS form a feature 
matrix with a size of 1 × 110.

Self‑attention module

The self-attention module is used to extract hidden features 
in AS and local target mRNA sequence embedding, after 
adding the sine and cosine position embedding.

The submodule for AS is composed of one linear layer, 
one TransformerEncoder (d_model = 16, num_layers = 4, 
nhead = 2), another linear layer, and one flattened layer. The 
initial dimension of AS embedding (21 × 640) produced 
by RNA-FM is too big to extract valid information. It may 
contain many redundant and task-irrelevant features, and the 
high-dimensional input will overburden the following self-
attention mechanism. Therefore, the first linear layer is used 
to squeeze it to form a 16-dimensional high-level representa-
tion (21 × 16), to reduce the computation complexity. The 
following TransformerEncoder will keep the same dimen-
sion during forward propagation. To concatenate with other 
features, the second linear layer will sequence the 16-dimen-
sional self-attention output to form a lower 4-dimensional 
representation (21 × 4), and the flattened layer will trans-
form it into a 1-dimensional output with the size of 1 × 84. 
The second linear layer plays the similar role of pooling, 
but it will take all input features into account, instead of just 
selecting the maximum or average value.

The submodule for mRNA sequence is composed of one 
linear layer, one TransformerEncoder (d_model = 8, num_
layers = 2, nhead = 1), and another linear layer. Similarly, the 
first linear layer will squeeze the initial RNA-FM embedding 
to form an 8-dimensional high-level representation (59 × 8), 
and the second linear layer will transform the self-attention 
output into a 1-dimensional feature matrix with a size of 1 
× 59 directly. We think the information in AS embedding 
is more useful and decisive than that in mRNA embedding, 
and that is why we keep fewer parameters in the submodule 
for mRNA.

In summary, the self-attention module will generate high-
level representations for AS with the size of 1 × 84, and for 
local target mRNA with the size of 1 × 59.

Fully connected module

The fully connected module is composed of a batch nor-
malization layer, four non-linear sublayers, and a sigmoid 
activation layer. Each non-linear sublayer consists of a lin-
ear layer, a ReLU activation function, and a dropout layer. 
Input features are made up of the output of the self-attention 
module and other prior-knowledge-based features, the size 

of which is 1 × 253 (84 + 59 + 110). We normalize the con-
catenation in batch first, for the sake of faster convergence 
and better generalization. The overall feature vector is then 
fed into the four sublayers (256, 64, 16, and 1 hidden node, 
respectively) to complete the feature fusion. The sigmoid 
activation function is used to generate the prediction score 
of siRNA inhibition finally.

The architecture of our approach

To facilitate and streamline siRNA design, we construct an 
approach, named AttSiOff. Aside from the aforementioned 
siRNA inhibition predictor, it consists of an mRNA searching 
package and an off-target filter.

The mRNA searching package

Usually, probed mRNA sequences may update with the devel-
opment of molecular biology, and only the target gene name is 
provided in the siRNA design. Downloading mRNA sequences 
manually on NCBI or other websites is time-consuming 
and annoying. Fortunately, we found one package, pyGB, 
implemented by Haotian Teng. For any given gene name, 
it could search for corresponding mature mRNAs rapidly.

The off‑target filter

To build an effective siRNA design tool, we shall consider 
the off-target effects, which may weaken the siRNA inhi-
bition, intervene in normal necessary cell activities, and 
do harm to receptors. They may arise from three aspects: 
on-target silencing of unintended mRNAs, miRNA-like off-
target silencing, and stimulation of innate immune response 
[28, 29].

On-target unintended silencing results from 16 or more 
consecutive base pairings between the sequences of AS and 
unwanted mRNAs. It can be detected via substring searching 
algorithm. However, some effective sites do not confirm per-
fect pairings, which may allow for wobble or mismatch [30]. 
To solve this problem, we use an improved Smith-Waterman 
algorithm to calculate multiple optimal alignments between 
AS and unwanted mRNAs, by replacing the one-off back-
tracking with recurrent backtracking, until the current maxi-
mum score is less than a specific threshold.

MicroRNA-like off-target effect refers to siRNA-induced 
regulation of unintended transcripts, through partial 
sequence complementarity to their 3’UTRs [28]. The pos-
sible binding sites for miRNA are the 8mer site (base pairing 
at positions 2–8 with a base A opposite at position 1), 7mer-
m8 site (base pairing at positions 2–8), and 7mer-A1 site 
(base pairing at positions 2–7 with a base A opposite posi-
tion 1) (Supplementary Fig. S1) [30]. We can also search 
these base pairings by substring searching.
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As for the non-specific immune response caused by 
siRNA, it can be reduced by selecting siRNAs carefully 
to avoid containing putative immunostimulatory motifs 
UGUGU and GUC​CUU​CAA in the AS [31]. Thus, we check 
if each siRNA contains the two motifs by substring searching.

The flow of our approach

The architecture of our siRNA design approach is shown in 
Fig. 2. The entire workflow is divided into four parts.

First, the pyGB package is used to search for mature 
mRNAs according to the input gene names from the 
GENOMES database. One can also provide mRNA 
sequences in FASTA format directly.

Second, every mRNA sequence is cleaved to generate all 
alternative 19-nucleotide SSs via sliding window and get 
corresponding 21-nucleotide ASs, 59-nucleotide local tar-
get mRNA, and other attributes simultaneously. Consider-
ing the potential weak specificity and possible toxicity, the 
following characteristics in the AS are also collected in this 
step: the Gibbs free energy, presence of two immunostimu-
latory motifs, presence of long stretches of identical bases, 

GC content, GC content, presence of more than 2 continu-
ous CAN pattern, and presence of more than 2 consecutive 
CUG/CCG/CGG motifs [32, 33].

Third, every siRNA duplex and opposite local mRNAs 
are fed into our siRNA inhibition predictor, and all siRNAs 
targeting identical genes are sorted in prediction-descending 
order.

Fourth, one can choose an optional off-target filter for 
top-k siRNAs. Here, we mainly make use of two data-
bases: humanRefseq (downloaded from ftp://​ftp.​ncbi.​nih.​
gov/​refseq/​H_​sapie​ns/​mRNA_​Prot/​human.​rna.​gbff.​gz) and 
TargetScan (downloaded from https://​www.​targe​tscan.​org/​
cgi-​bin/​targe​tscan/​data_​downl​oad.​vert72.​cgi). The human 
RefSeq database contains massive human mRNA sequences, 
and it is used to calculate on-target unintended silencing  
effects. The TargetScan database is composed of all 
human 3’UTR segments, and it is used to compute 
miRNA-like off-target effects. As is discussed above, the 
miRNA-like off-target and on-target off-target can both 
be calculated using substring searching. The on-target 
off-target can also be predicted by an improved Smith-
Waterman algorithm.

Fig. 2   The architecture of our siRNA design approach. It contains optional mRNA searching package pyGB, our siRNA inhibition prediction 
model, and optional off-target filter. The package pyGB can search mRNA sequences for given gene name from Genomes database. But one can 
also provide mRNA sequences directly. Substring and imprvoed Smith-Waterman algorithm are used to analyze on-target or miRNA-like off-
target effect, by aligning siRNA with each untargeted mRNA from Refseq or TargetScan 3’UTRs database

ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.rna.gbff.gz
ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.rna.gbff.gz
https://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi
https://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi
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This workflow will eventually provide the user with top-k 
siRNAs with their multiple attributes and possible off-target 
effects, which facilitate the pre-screening stage greatly.

Experimental setup

To ensure the uniform distribution between the trainset and 
the test set, we sample the siRNA with indices of i, i + 10, 
i + 20…in DHRT to form the test set during tenfold cross-
validation. Besides, we consider different sources of datasets 
as independent test set, to further validate the generalization 
of our method.

Our method is built with Pytorch in Python. We choose 
the Adam optimizer with weight decay of 5e−4 and an initial 
learning rate of 0.005. Dropout operation exists both in the 
multi-head self-attention module and the fully connected 
module, to repress the impact of overfitting. In addition, we 
set the maximum epoch to 1000. We use an early-stopping 
strategy to supervise the PCC metric. If this indicator con-
tinues decreasing for 20 epochs, it will terminate the training 
phase, and the model parameters with the best PCC will be 
saved. As a regression task, we train the model with the 
mean square error (MSE) loss.

Evaluation metrics

To estimate the prediction performance, we use three statisti-
cal indicators here, including the Pearson correlation coef-
ficient (PCC), the Spearman correlation coefficient (SPCC), 
and the Area under the Receiver Operating Characteristic 
curve (AUC). PCC and SPCC evaluate the linear correla-
tion between two sets of data. AUC is used to evaluate the 
performance of binary classification. In this paper, we use 
0.7 as the inhibition threshold to classify a siRNA to be 
positive or negative.

Among these three metrics, SPCC is the most important 
one. It denotes the correlation of rankings between predic-
tions and labels. In siRNA design, precise ranking prediction 

will reduce the workload to find functional siRNAs greatly. 
For example, a siRNA with a low inhibition of 0.2 is still 
optimal, if only its inhibition rank first.

Results and discussion

Tenfold cross‑validation result

We compare our model with i-Score [11], Biopredsi [9], 
DSIR [10], one CNN-based model [12], and one GNN-
based model [14]. The first three algorithms lack source 
code, and they are hard to reproduce. Fortunately, we find 
the i-Score webserver can generate all siRNA candidates 
with predictions of these models, for any given target 
mRNA sequence. But siRNAs at the first two positions are 
limited to predict, and that is why we discard two samples 
in DT above.

The tenfold cross-validation result is shown in Fig. 3. 
Apparently, our model achieves state-of-the-art performance 
among the six methods, reaching an average PCC of 0.81, 
SPCC of 0.84, and AUC of 0.886.

In comparison, the three traditional methods show poor 
performance on all indicators. The reasons may be that 
their inputs, based on manual feature engineering, lack 
significant information and are usually biased. And their 
models have limited predictive capability to capture hid-
den motifs.

The CNN-based model reaches an average PCC of 0.67, 
SPCC of 0.652, and AUC of 0.848, which are much lower 
than ours. We may deduce that their convolutions with 
multiple kernels only focus on local adjacent correlation, 
and fail to capture the global interrelationship of the entire 
sequences. The forceful pooling operation results in the loss 
of significant information. Most importantly, their one-hot 
encoding representations suffer from the aforementioned 
problems, the sequence features obtained from which con-
tain scanty information.

Fig. 3   The tenfold cross-validation result of our predictor compared with existing methods. Three metrics are shown with boxplots, including (a) 
PCC, (b) SPCC, and (c) AUC. The boxplot is used to describe 4-quartiles of data distribution. The orange lines represent mean values, the green 
dashed lines represent median values, and small circles represent outliers. Obviously, our method outperforms all existing methods among three 
metrics, reaching an average PCC of 0.81, SPCC of 0.84, and AUC of 0.886
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The performance of the GNN-based model is not bad, 
achieving an average PCC of 0.728, SPCC of 0.705, and 
AUC of 0.873. The idea of modeling siRNA-mRNA interac-
tion tasks with graph structure is innovative and intuitive. 
Their experiments demonstrate that the biological graph 
model has potent predictive capability, even with limited 
features as the property of nodes. Their predictive accu-
racy may further improve with more meaningful features as 
input. However, the most serious problem of the GNN-based 
model is that it cannot predict on new siRNA sample with 
a fixed graph. That is why we exclude this model in the fol-
lowing cross-dataset validation.

Cross‑dataset validation

For better demonstration of the generalization, we evaluate 
the cross-dataset performance. We train the model only on 
DH, DR, and test on DT, or train it only on DH, DT, and test 
on DR. These three datasets are independent of each other. 
There are two reasons why we do not consider DH as test set. 
One is that the samples in DH make up nearly seven-tenth of 
all samples, and it is very hard to train our predictor with a 
small amount of data. The other is that the three traditional 
models are all trained with DH. And we cannot get access to 
their source code or reproduce them easily. Instead, we col-
lect their predictions on DT and DR from i-Score website. 
Therefore, the performance of them are unconvincing with 
DH as test set.

The results are shown in Table 2. It can be expected 
to notice a big drop in all metrics compared with those 
of tenfold cross-validation, due to the out-of-distribution 
problem.

Although the number of parameters in our model is 
much bigger than existing methods, it does not show 
the problem of overfitting. And it still significantly out-
performs all other methods on cross-dataset validation, 
beyond our expectations. We may deduce that the batch 
normalization, dropout, and early-stopping strategy all 
help to ensure a good generalization.

To interpret the internal reasons why all indicators on 
DT are higher than those on DR, we use T-distributed 

Stochastic Neighbor Embedding (t-SNE) to visualize the 
RNA-FM embedding of siRNA sequences from three 
datasets (Supplementary Fig. S2). The samples in DT are 
intrinsically divided into three clusters, while the samples 
in DR are distributed more chaotically. That means pre-
dicting on DT is easier than that on DR coherently. We 
also analyze the differences in the inhibition distribution 
between these three datasets (Supplementary Fig. S3). 
The kernel density estimate (KDE) plots show that the 
distributions of DH and DT are quite similar, but they dif-
fer from DR. This may be another reason why all models 
perform better on DT than DR.

Comparison of five siRNA drugs

Moreover, we evaluate our method on above five siRNA 
drugs. They are chemically modified to further improve inhi-
bition, lower off-target effect, and weaken toxicity. Theo-
retically, bare sequences of these drugs probably also show 
high inhibitions. If not, they should not be considered as 
candidates to add chemical modifications. Here we use their 
bare sequences to verify our method. The reported median 
knockdowns, the predicted inhibitions, the rankings of pre-
dictions among all corresponding siRNA candidates, and 
the number of possible off-target binding sites are shown in 
Supplementary Table S3.

Our approach, AttSiOff, helps a lot to facilitate this exper-
iment. First, we take the target gene names as the input, 
namely TTR, ALAS1, PCSK9, and HAO1. The mRNA 
searching package then automatically searches the latest 
mature mRNA sequences from the GENOMES database 
and collects all possible siRNA candidates by sliding win-
dow. We do not need to download those mRNA sequences 
manually. Second, our predictor predicts the inhibitions of 
siRNAs grouped by gene names and sorts them in inhibition-
descending order. We use the location of these five siRNAs 
in their respective candidate sets as the ranking score. Third, 
for the five siRNAs, the off-target filter will compute the 
number of possible off-target binding sites.

The rankings show that inhibitions of the five siRNAs, 
predicted by our model, rank near the top in all candidates 

Table 2   The cross-dataset prediction results. Bold numbers indicate the best results. Our method outperforms others on DT, while shows slight 
advantage on DR

Test set Metric s-Biopredsi DSIR i-score cnn ours

DT PCC 0.529 0.582 0.552 0.585 0.742
SPCC 0.527 0.581 0.548 0.57 0.776
AUC​ 0.763 0.778 0.774 0.762 0.893

DR PCC 0.54 0.549 0.55 0.522 0.577
SPCC 0.53 0.545 0.542 0.524 0.585
AUC​ 0.73 0.745 0.753 0.755 0.802
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(1.79%, 0.62%, 2.4%, 11.2%, and 3.58%), which means 
researchers need fewer experiments to find wanted drugs, 
compared with other methods. And the predicted off-target 
effects are in allowable range, to ensure the specificity.

The comparison results demonstrate that our predictor 
outperforms other methods and can facilitate the design 
process for a given gene.

Experiments on new target gene

We randomly select 40 siRNAs targeting AGT, to conduce 
biological experiments. However, we find that our method 
produces unsatisfactory result, reaching PCC of -0.268, 
SPCC of -0.231, and AUC of 0.441. It is quite difficult to 
work in unseen scenarios.

To solve this problem, we collect other 600 siRNAs tar-
geting AGT from one patent (ID: WO2023014765A1). And 
these samples do not overlap with ours. After finetuning our 
pre-trained model, all indicators show great improvement, 
with PCC of 0.289, SPCC of 0.293, and AUC of 0.695. 
Focusing on those siRNAs with high experimental inhibi-
tions, our finetuned model also gives high predictions. That 
means we would not miss potentially functional siRNAs.

Ablation study

More experiments are executed on the hyperparameters of 
TransformerEncoder. 2, 4, 8 layers, and 1, 2, and 4 heads 
are tested, separately. The results show that inadequate or 
excessive layers or heads both decrease the prediction per-
formance. To obtain the optimal PCC metric, we select 4 
layers with 4 heads for siRNA embedding and 2 layers with 
1 head for mRNA embedding.

We also test the effect of different loss functions. In regres-
sion tasks, MAE and MSE are frequently used. The observed 
PCC is 0.712 for MAE and 0.77 for MSE. The reason may 
be that MSE loss will pay more attention to those anomalous 
samples to get more stable closed-loop solutions for weights. 
And this will lead to better generalization on the test set.

In addition, we emphasize the advantages of pre-trained 
RNA-FM embedding, compared with one-hot encoding. 
Thus, we also execute comparative experiments by replacing 
the RNA-FM embedding with one-hot encoding in a sequence 
context. The result gives a 21% average decrease in PCC.

Conclusions

Hundreds or thousands of siRNAs may target the same 
mRNA sequence. Utilizing computational methods to iden-
tify those hyper-functional siRNAs from massive candi-
dates has increasingly become a significant study. However, 
existing methods are still not accurate and robust enough to 

design potent and specific siRNAs, and most of them have 
not considered unintended off-target effects.

In this paper, we propose a novel self-attention-based 
approach to siRNA inhibition and off-target effect predic-
tion, named AttSiOff. First, the mRNA searching pack-
age helps obtain target mRNA sequences for a given gene 
name. Then the inhibition-related hidden features are cap-
tured from pre-trained RNA-FM embedding through the 
multi-head self-attention mechanism. After being concat-
enated with other prior knowledge-based features, they 
are fed into the fully connected module to complete the 
feature fusion and give the inhibition prediction. At last, 
the off-target filter utilizes substring searching or improved 
Smith-Waterman algorithms to give the possible amount 
of off-target binding sites. Compared with existing meth-
ods, our approach shows four major advantages. First, we 
include prior knowledge-based features as input, such as 
GC content, the secondary structure, etc. These features 
analyzed from a small biased dataset still help predict 
inhibitions more precisely. Second, we use a pre-trained 
RNA-FM model to encode the sequence context. The 
high-dimensional embedding contains more meaningful 
information than one-hot binary encoding, especially the 
functional and structural information. Third, we replace 
convolution with a multi-head self-attention mechanism, 
to capture the global long-distance dependencies within 
the entire sequence. Fourth, we use an additional filter to 
predict the off-target effects, to further ensure its specific-
ity in practical application.

To evaluate the validity of our predictor, relevant com-
parison experiments are designed for verification. Experi-
mental results show that our model achieves state-of-the-
art performance on PCC, SPCC, and AUC, compared with 
classical methods based on ANN, LASSO, SVM, CNN, 
and GNN. And the cross-dataset validation demonstrates 
the brilliant generalization and robustness of our model. 
Besides, our automatic siRNA design tool, AttSiOff, facili-
tates our experiments on five siRNA drugs, and we hope it 
can help other researchers, who are devoted to designing 
both effective and specific siRNA. In unseen scenarios, the 
predicator may produce unsatisfactory result. But it can be 
improved a lot, as long as there are some known samples 
to finetune pre-trained model. And this is perfectly normal 
for deep-learning-based algorithms.

This study provides new perspectives and analytical 
ideas for siRNA inhibition and off-target effects predic-
tion. And we hope it helps bring self-attention mechanism 
to broader bioinformatics-related applications. Since some 
chemically modified siRNAs are deliberately designed to 
further improve their inhibitions and reduce the off-target 
effect, AttSiOff will be used as the backbone and the rep-
resentations of chemical modification will be taken into 
account in the future.
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